Difference between revisions of "Baye Morgan Scholten (2006) - Information Search and Price Dispersion"

From edegan.com
Jump to navigation Jump to search
imported>Ed
imported>Ed
Line 14: Line 14:
 
*A mass <math>\mu</math> is interested in purchasing the product
 
*A mass <math>\mu</math> is interested in purchasing the product
 
*Consumers have quasi-linear utility:
 
*Consumers have quasi-linear utility:
<center><math>u(q) + y\,</math> where <math>y\,</math> is a numeraire good</center>
+
<center><math>u(q) + y\,</math> where <math>y\,</math> is a numeraire good</center>
 
*The indirect utility of consumers is:
 
*The indirect utility of consumers is:
<center><math>V(p,M) = v(p) + M\,</math></center>
+
<center><math>V(p,M) = v(p) + M\,</math></center>
 
where <math>v(\cdot)\,</math> in nonincreasing in <math>p\,</math>, and <math>M\,</math> is income.
 
where <math>v(\cdot)\,</math> in nonincreasing in <math>p\,</math>, and <math>M\,</math> is income.
 
*By [http://en.wikipedia.org/wiki/Roy%27s_identity Roy's identity]:
 
*By [http://en.wikipedia.org/wiki/Roy%27s_identity Roy's identity]:
<center><math>q(p) \equiv -v'(p)\,</math>.</center>
+
<center><math>q(p) \equiv -v'(p)\,</math>.</center>
 
*There is a search cost <math>c\,</math> per price quote
 
*There is a search cost <math>c\,</math> per price quote
 
*The customer purchases after <math>n\,</math> price quotes
 
*The customer purchases after <math>n\,</math> price quotes
 
*The final indirect utility of the customer is  
 
*The final indirect utility of the customer is  
<center><math>V(p,M) = v(p) + M - cn\,</math></center>
+
<center><math>V(p,M) = v(p) + M - cn\,</math></center>
  
'''A on the derivation of demand'''
+
'''A note on the derivation of demand'''
Recall that:
+
Recall that:
<center>
+
<center>
<math>M=e(p,u)\,</math>,  
+
<math>M=e(p,u)\,</math>,  
so that <math>v(e(p,u),p)=u\,</math> when the expenditure function is evaluated at <math>p\,</math> and <math>u\,</math>.
+
so that <math>v(e(p,u),p)=u\,</math> when the expenditure function is evaluated at <math>p\,</math> and <math>u\,</math>.
<math>\frac{d}{dp(v(M,p))} = \frac{dv(M,p)}{dm} \cdot \frac{dM]{dp} + \frac{dv}{dp} = 0,\,</math> where
+
<math>\frac{d}{dp(v(M,p))} = \frac{dv(M,p)}{dm} \cdot \frac{dM}{dp} + \frac{dv}{dp} = 0,\,</math> where
<math>\frac{dM}{dp} = \frac{de(p,u)}{dp}\,</math>.
+
<math>\frac{dM}{dp} = \frac{de(p,u)}{dp}\,</math>.
<math>\therefore q(m,p) = \frac{de(p,u)}{dp} = -\frac{dv/dp}{dv(M,p)/dm}\,</math>
+
<math>\therefore q(m,p) = \frac{de(p,u)}{dp} = -\frac{dv/dp}{dv(M,p)/dm}\,</math>
<math>\therefore q(m,p) = -\frac{d}{dp(v(p))}\,</math>\\
+
<math>\therefore q(m,p) = -\frac{d}{dp(v(p))}\,</math>\\
 
  </center>
 
  </center>
 
   
 
   

Revision as of 20:36, 25 January 2010

  • This page is part of a series under PHDBA279B

Key Reference(s)

Introduction

Baye et al. (2006) provides a survey of models of search and clearing-house that exhibit price dispersion. The survey is undertaken through two specializable frameworks, one for search and one for cleaning-houses, which are then adapted to show the key results from the literature. There are a number of equivalent results across the two frameworks.

Search Theoretic Models of Price Dispersion

The general framework used through-out is as follows:

  • A continuum of price-setting firms with unit measure compete selling an homogenous product
  • A mass [math]\mu[/math] is interested in purchasing the product
  • Consumers have quasi-linear utility:
[math]u(q) + y\,[/math] where [math]y\,[/math] is a numeraire good
  • The indirect utility of consumers is:
[math]V(p,M) = v(p) + M\,[/math]

where [math]v(\cdot)\,[/math] in nonincreasing in [math]p\,[/math], and [math]M\,[/math] is income.

[math]q(p) \equiv -v'(p)\,[/math].
  • There is a search cost [math]c\,[/math] per price quote
  • The customer purchases after [math]n\,[/math] price quotes
  • The final indirect utility of the customer is
[math]V(p,M) = v(p) + M - cn\,[/math]

A note on the derivation of demand Recall that:

[math]M=e(p,u)\,[/math], so that [math]v(e(p,u),p)=u\,[/math] when the expenditure function is evaluated at [math]p\,[/math] and [math]u\,[/math]. [math]\frac{d}{dp(v(M,p))} = \frac{dv(M,p)}{dm} \cdot \frac{dM}{dp} + \frac{dv}{dp} = 0,\,[/math] where [math]\frac{dM}{dp} = \frac{de(p,u)}{dp}\,[/math]. [math]\therefore q(m,p) = \frac{de(p,u)}{dp} = -\frac{dv/dp}{dv(M,p)/dm}\,[/math] [math]\therefore q(m,p) = -\frac{d}{dp(v(p))}\,[/math]\\

[math][/math] [math][/math] [math][/math] [math][/math]