Changes

Jump to navigation Jump to search
no edit summary
{{Article
|Has page=Bolton Farrell (1990) - Decentralization Duplication And Delay
|Has bibtex key=
|Has article title=Decentralization Duplication And Delay
|Has author=Bolton Farrell
|Has year=1990
|In journal=
|In volume=
|In number=
|Has pages=
|Has publisher=
}}
*This page is referenced in [[PHDBA602 (Theory of the Firm)]]
*If both firms enter they each get <math>\mu\,</math>, for a payoff of <math>\mu - S\,</math>
*<math>S \sim F(\cdot)\,</math>, with support such that <math>\mu < S < \lambda\,</math> for all realizations
*There are infinite periods (<math>t\,</math>), discounted by <math>\delta\,</math>, and the strategy space is <math>\{Enter,Wait\}\,</math>
*The game ends when one or more firms <math>Enter\,</math>
 
===The General Result===
Then it must be the case that <math>t_1 < t_2\,</math>
 
To see this assume that <math>A\,</math> believes that there is:
*a probability that <math>B\,</math> will not have entered prior to <math>t\,</math> of <math>\alpha(t)\,</math>, where we denote <math>a(t) = \delta^t \alpha(t)\,</math>.
Then <math>A's expected payoff from entering at <math>t\,</math> is:
Then <math>A\,</math>'s expected payoff from entering at <math>t\,</math> is: :<math>a(t)(\lambda - S) + a(t)(h(t)(\mu - \lamdbalambda)) = a(t)(\lambda - S - h(t)(\lamdba lambda -\mu))\,</math> 
For <math>t_1\,</math> to be prefered with <math>S_A^1\,</math>, and <math>t_2\,</math> to be prefered with <math>S_A^2\,</math>, it must be true that:
:<math>a(t_1)(\lambda - S_A^1 - h(t)(\lamdba lambda -\mu)) \ge a(t_2)(\lambda - S_A^1 - h(t)(\lamdba lambda -\mu))\,</math> 
and
:<math>a(t_2)(\lambda - S_A^2 - h(t)(\lamdba lambda -\mu)) \ge a(t_1)(\lambda - S_A^2 - h(t)(\lamdba lambda -\mu))\,</math>
So:
:<math>a(t_1)(\lambda - S_A^1 - h(t)(\lamdba lambda -\mu)) + a(t_2)(\lambda - S_A^2 - h(t)(\lamdba lambda -\mu)) \ge a(t_2)(\lambda - S_A^1 - h(t)(\lamdba lambda -\mu)) + a(t_1)(\lambda - S_A^2 - h(t)(\lamdba lambda -\mu))\,</math> 
:<math>\therefore (a(t_1) - a(t_2))(S_A^1 - S_A^2) \le 0\,</math>
 
As <math>a(t)\,</math> is decreasing in <math>t\,</math>, and <math>S_A^1 < S_A^2\,</math> by assumption, it must be that <math>t_1 < t_2\,</math>.
Th paper then sets up the '''Fundamental Difference Equation''', where is supposes cutoffs <math>S_1\,</math>, <math>S_2\,</math> and so forth such that firms with costs between <math>S_{t-1}\,</math> and <math>S_t\,</math> will enter in <math>t\,</math> (providing no previous entry has occurred). Using the indifference of such a firm between periods <math>t\,</math> and <math>t+1\,</math> we have:
:<math>\lambda - S_t -h(t)(\lambda - \mu) = \delta(1-\h(t))(\lamdba lambda - S_t - h(t+1)(\lambda - \mu)\,</math>
We work with the equilibria where low cost types enter in <math>t=1\;</math>, and high cost types enter strictly afterwards.
One Bayesian equilibrium is then:
(Note that this equation is not the same as in the paper, but does give the correct <math>v\,</math>).
<math>v= 0 \implies p = \frac{\lambda - S}{\lambda - \mu}\,</math>
:<math>v= 0 \implies p = \frac{\lambda - S}{\lambda - \mu}\,</math>
 To calculate the expected social surplus we need the probability that nothing happens until <math>t\,</math> and then one firm enters, <math>q_t\,</math>, and the probability that nothing happens until <math>t \,</math> and then both firms enter, <math>r_t\,</math>:
:<math>q_t = (1-p)^{2(t-1)}\cdot 2p(1-p)\,</math>
 
:<math>r_t = (1-p)^{2(t-1)}\cdot p^2\,</math>
:<math>W^G = \sum_{t=1}^{\infty} \delta^{t-1}(q_t(1-S) + r_t(1-2S)\,</math>
 :<math>\therefore W^G = (1-S) - \underbrace{\left (1 - \frac{p(2-p)}{1-\delta(1-p)^2)}\right)(1-S)}_{\mbox{Delay Loss}} - \underbrace{\frac{p^2}{1-\delta(1-p)^2)}S}_{\mbox{Duplication Loss}}\,</math> 
There is an inherent trade-off between delay and duplication - both can be expressed in terms of <math>p\,</math>, or just in terms of each other.
:<math>y = \frac{(x-1)^2}{4x}\,</math>
 
By changing the parameters <math>\lambda\,</math>, <math>\mu\,</math>, or <math>S\,</math>, a planner could make this trade-off, allowing less delay at the expense of more duplication, or vice versa.
This can be written as the difference from the first-best:
:<math>W^* - W^D = \underbrace{q^2 S_L + (1-q)^2\delta \cdot\frac{p^2}{1-\delta(1-p)^2}S_H}_{\mbox{Duplication Loss}} + \underbrace{\left (1-q)^2\delta \cdot(1 - \frac{p(2-p)}{1-\delta(1-p)^2}\right)(1-S_H)}_{\mbox{Delay Loss}}\,</math>
:<math>W^* - W^D = \underbrace{q^2 S_L + (1-q)^2\delta \cdot\frac{p^2}{1-\delta(1-p)^2)S_H}_{\mbox{Duplication Loss}} + \underbrace{\left (1-q)^2\delta \cdot(1 - \frac{p(2-p)}{1-\delta(1-p)^2}\right)(1-S_H)}_{\mbox{Delay Loss}}\,</math>
====Central Planning (with incomplete infoIncomplete Information)====
:<math>W^R = 1 -(qS_L + (1-q)S_H)\,</math>
 
Which gives:
:<math>W^* - W^R = q(1-q)(S_H - S_L)\,</math>
:<math>W^D (\delta=0) = q^2(1-2S_L) + 2q(1-q)(1-S_L)\,</math>
 
or
:<math>W^* - W^D (\delta=0) = q^2S_L + (1-q)^2(1-S_H)\,</math>
 
Then decentraliazation is better than random choice iff:
<math>W^* - W^D (\delta=0) < W^* - W^R\,</math>
 
<math>q^2S_L + (1-q)^2(1-S_H) < q(1-q)(S_H - S_L)\,</math>
 
Which is less likely to hold when <math>S_H\,</math> and <math>S_L\,</math> are close (private info is almost unimportant), and more likely to hold when <math>1-S_H\,</math> is small (delay is not costly - not this is opposite of what the paper says) and <math>S_L\,</math> is large (duplication is costly).
'''For non-urgent problems''', when <math>\delta = 1\,</math>, decentralization gives:
:<math>W^* - W^D (\delta=1) = q^2 S_L + (1-q)^2 \cdot\frac{p^2}{1-(1-p)^2)}S_H + \left (1-q)^2 \cdot(1 - \frac{p(2-p)}{1-(1-p)^2}\right)(1-S_H)\,</math>
<math>W^* - W^D (\delta=1) = q^2 S_L + \left (1-q)^2 \cdot(1 - \frac{\lambda - S_H}{\lambda + S_H - 2 \mu}\right)(1-S_H)\,</math>
 
Then decentralization is better than random chocie iff:
:<math>W^* - W^D (\delta=1) < W^* - W^R\,</math>
 
:<math>q^2 S_L + \left (1-q)^2 \cdot(1 - \frac{\lambda - S_H}{\lambda + S_H - 2 \mu}\right)(1-S_H) < q(1-q)(S_H - S_L)\,</math>

Navigation menu