|Has page=Baron (2001) - Theories of Strategic Nonmarket Participation
|Has bibtex key=
|Has article title=Theories of Strategic Nonmarket Participation
|Has author=Baron
|Has year=2001
|In journal=
|In volume=
|In number=
|Has pages=
|Has publisher=
}}
*This page is part of a series under [[PHDBA279A]]
*This page is referenced in [[BPP Field Exam Papers]]
==Reference(s)==
:Case 1: <math>z \le y: \quad r_x=\alpha (x-y)</math> obtained by noting that <math>x \ge y</math> and that both of the absolute values are positive and rearranging.
:Case 2: <math>y \le z \le x: \quad r_x= 2 \alpha \left (\frac{x+y}{2} + - z \right )</math> obtained by noting that the LHS absolute value in equation (1) is positive, whereas the RHS value is negative.
:Case 3: <math>x \le z: \quad r_x=-\alpha (x-y)</math> obtained by noting that both of the absolute values are negative and rearranging.
Bernheim and Whinston (1984) provide four necessary and sufficient conditions for a sub-game perfect Nash equilibrium in this model. In the notion of the model, these are: