BPP Field Exam 2010 Answers
- This page is included under the section BPP Field Exam
- This page is provides answers to the BPP Field Exam 2010
Contents
Question B1: Production in Teams
Relevant papers:
- Holmstrom (1982), Moral Hazard in Teams. Not on 2010 exam's reading list.
- Holmstrom (1999), Firm as Subeconomy, Not on 2010 exam's reading list.
Question B1.1
Notes about assumptions:
- The prompt does not explicitly say that everyone must receive the same share. Nonetheless, many of the relevant papers assume that this is the case. As such, will solve the problem both ways.
- The prompt also does not explicitly require a balanced budget. However, no source of funding for the agents is mentioned besides the combined output V of the individual agents. As such, I will assume that the budget balance restriction must hold.
- The prompt also does not address whether work decisions are made cooperatively or non-cooperatively, or whether transfers or contracts are possible between employees. I will assume that no transfers or contracts between employees are possible, and that work decisions are made non-cooperatively.
Each agent's maximization problem
[math] \max_{e_{i}}[s_{i}\sum_{j\neq i}z(e_{j})+s_{i}z(e_{i})-e_{i}] [/math]
Note that if the agent chooses to work, his utility is [math]s_{i}\sum_{j\neq i}z(e_{j})+s_{i}z-1[/math]
If he chooses to shirk his utility is [math]s_{i}\sum_{j\neq i}z(e_{j})[/math].
Therefore, he'll work if [math]s_{i}z-1\gt 0 \iff s_{i}z\gt 1 \iff s_{i}\gt \frac{1}{z}[/math].
Note that not everyone can have [math]s_{i}\gt \frac{1}{z}[/math] because [math]\sum s_i[/math] in this world [math]=\frac{N}{z}\gt 1[/math].
(a) My answer, assuming that all shares must be equal.
If all shares must be equal, no contract scheme can get any of the workers to work. This is because a worker will only work if [math]s_{i}\gt \frac{1}{z}[/math], but we know that not everyone can have this contract because [math]\sum s_i[/math] in this world [math]=\frac{N}{z}\gt 1[/math].
(b) My answer, assuming that some shares can be different.
If some shares can be different, then the optimal contract is where some number [math]M\lt N[/math] workers get [math]s_{i}=\frac{1}{z}[/math], and the remainder get [math]s_{i}=0[/math]. [math]M[/math] is the largest number such that [math]\frac{M}{Z}\leq 1[/math]. [math]M[/math] workers will provide effort, and [math]N-M[/math] workers will shirk.
Question B1.2
In the previous scenario, the CEO got [math]M[/math] workers to work. The question now is whether burning some of the output [math]V[/math] will motivate the remaining [math]N-M[/math]
Question B1.3
The CEO can design a scheme that exploits the risk aversion of the agents using chance. The contract would work like this: If all employees exert work, each worker will get an equal share [math]1/N[/math] of the effort. However, if any single worker does NOT work, then the payoffs will be determined by a lottery in which each employee gets a [math]\frac{1}{N}[/math] chance of getting 100% of the combined output. I will now show that irrespective of what other players are doing, the dominant strategy is to work.
Note that CARA utility is [math]u(c)=1-e^{-\rho c}[/math]. An employee i's utility from working (if others work) is [math]1-\exp[-\rho(\frac{1}{N}\sum_{i\neq j} z(e_{j})+\frac{1}{N}z(e_{i})-1)][/math].
An employee i's utility from working if others are not working is: [math]\frac{1}{N}(1-\exp[-\rho(\sum_{i\neq j} z(e_{j}...)])[/math].
An employee i's utility from NOT working if others are not working is: [math]1-\exp[\frac{1}{N}\sum_{i\neq j} z(e_{j})+\frac{1}{N}z(e_{i})-1][/math]
If employee i does NOT work, the lottery is triggered and his utility is: [math]1-\exp[sum_{i\neq j} z(e_{j})][/math].
An employee i's utility from NOT working guarantees that the lottery will be triggered.
Question C1: Agenda Control and Status Quo
(i)
(ii)
(iii)
(iv)