Changes

Jump to navigation Jump to search
no edit summary
{{Article
|Has page=Lee,Wilde (1980) - Market Structure And Innovation A Reformulation
|Has bibtex key=
|Has article title=Market Structure And Innovation A Reformulation
|Has author=Lee,Wilde
|Has year=1980
|In journal=
|In volume=
|In number=
|Has pages=
|Has publisher=
}}
*This page is referenced in [[PHDBA602 (Innovation Models)]]
==Reference(s)==
*Lee, T. and L.L. Wilde (1980), "Market structure and innovation: A reformulation", Quarterly Journal of Economics, 94, pp. 429-436. [http://www.edegan.com/pdfs/Lee%20Wilde%20(1980)%20-%20Market%20structure%20and%20innovation%20A%20reformulation.pdf (pdf)]
 
@article{lee1980market,
title={Market structure and innovation: a reformulation},
author={Lee, T. and Wilde, L.L.},
journal={The Quarterly Journal of Economics},
pages={429--436},
year={1980},
publisher={JSTOR}
}
==Abstract==
Expected costs are thus:
:<math>\mathbb{E}C = \int_0^{\infty} \left ( \int_0^{t} x e^{-rs} ds \right ) \cdot pr(\hat{\tau_i} = t or \tau_i = t) dt + F\;</math>
:<math>\therefore \mathbb{E}C = \int_0^{\infty} \left ( \int_0^{t} x e^{-rs} ds \right ) \cdot (a+h) e^{-(a+h)t} dt + F\;</math>
:<math>\therefore \mathbb{E}C = \frac{x}{a+h+r} + F\;</math>
:<math>\mathbb{E}\pi = \frac{Vh - x}{a+h+r} - F\;</math>
 
==Comparative Statics==
 
The FOC gives:
 
:<math>\frac{\partial \pi}{\partial x} = \frac{(a+r)(Vh' - 1) - (h-xh')}{(a+h+r)^2} = 0\;</math>
 
 
Rearranging for <math>V\;</math> and subbing back in we get:
 
:<math>\mathbb{E}\pi = \frac{h-xh'}{(a+r)h'} -F\;</math>
 
 
Non-negative profits require (at least) <math>h > \hat{x}h'\;</math>, which is opposite to Loury, so <math>h''<0\;</math> at <math>\hat{x}\;</math>.
 
 
So when we do the comparative static on investment with respect to the degree of rivalry we find that it is now positive::
 
:<math>\frac{d \hat{x}}{d a} = \frac{-(Vh'-1)}{((a+r)V-x)h''} > 0\;</math>
 
Again this differs from Loury.
 
In the full equilibrium, as a result of symmetry, it is the case that:
 
:<math>a = (n-1)h(\hat{x})\;</math>
 
 
Letting the implicit solution to <math>\frac{\partial \mathbb{E}\pi}{\partial x} = 0\;</math> be denoted <math>\hat{x} = H(a)\;</math>, then in the full equilibrium <math>\hat{x} = H((n-1)h(\hat{x}))\;</math>.
 
Noting that:
 
:<math>\frac{d H}{d a} = \frac{d \hat{x}}{da} >0\;</math>
 
 
We can see the comparative static with respect to <math>n\;</math> is also exactly opposite to that of Loury (providing an analogous stability condition holds):
 
:<math> \frac{d \hat{x}}{dn} = \frac{H}{\partial a} h/1 - \left( \frac{\partial H}{\partial a} \right )(n-1)h'\;</math>
 
(but I get: <math>\frac{d \hat{x}}{dn} = \frac{\partial H}{\partial a}\cdot( h + (n-1)h')\;</math> )
 
The remainder of the proofs have the same comparative statics as Loury, despite these differences.

Navigation menu